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ABSTRACT

We develop techniques for estimating the coefficients, boundary data,

and initial data associated with transport equations (or more generally,

parabolic distributed models). Our estimation schemes are based on cubic

spline approximations, for which convergence results are given. We discuss

the performance of these techniques in two investigations of biological

interest: (1) transport of labeled sucrose in brain tissue white matter

(2) insect dispersal that cannot be modeled by a random diffusion
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11 Introduction

In this paper we propose general parameter estimation techniques to

be used in moddlinj of transport phenomena. While the fundamental ideas

we discuss have proved quite successful in other areas of application

(elasticity, seismology, enzyme colum reactors, etc.-see, for example,

(21, [3], [41, (6], (9]), our emphasis here is a class of transport equations

arising In biology. We treat models in which certain of the coefficients

to be estimated are spatially varying. The methods are valid in more

complex transport problems with coefficienti that vary both temporally and

spatially (see [61,[71D, but the underlying theory is technically somewhat

different and more complicated.

We begin in section 2 by formulating an "identification" or parameter

estimation problem involving a general transport equation. Although for

co-,: ience in exposition we treat only scalar equations, the ideas and

convergence results easily extend to vector systems. Indeed, in a number

of problems we have successfully employed the techniques for coupled system

of equations.

In section 3, we then reformulate the estimation problem, putting it in

abstract form for concise development of our ideas. This abstract problem

is approximated by a sequence of estimation problems In ection 4 where we

give convergence results for states and parameters. We also explain our use

of computational packages to solve the estimation problems. In section 5,

we apply the methods to two examples:

(1) estimation of diffusion and bulk flow parameters for the transport

of substances n tissue (specifically, for transport of sucrose in

cat brain white matter)

W . I
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(ii) estimation of spatially varying coefficients in population

dispersal models (in this case, models of flea beetle movement

within linear arrays of collard patches).

As we shall explain in our concluding remarks, the methods we have developed

have yielded satisfactory results and insight Into biological systems. We

are confident that other Investigations concerning transport models In biology

could also be served by the application of our parameter estimation methods.

in our discussions in sections 3 and 4, it will be convenient to employ

notation from elementary functional analysis. Although this notation will

be quite familiar to our more mathematically trained readers, we summarize

some of it briefly for others. By L 2 (0,1) we shall mean the standard Rilbert

space of "functions" f defined on (0,I) with fJIf2 < OR. 'the Inner product
1 0 1

In this space is <f,g> - Jo fg. We denote by H the usual Sobolev space

of functions f In L2 (0,1') with first derivatives Df in L2(O,1)*; the subspace

of functions i' Ui vanishing at x - 0 and x - 1 is denoted by 4. More

generally, N will be the Sobolev space of functions having derivatives up

to order 1, with the j thderivative Djf in L.

The usual space of essentially bounded functions is denoted by L.

with the norm being given by IJgj w ess sup jg(x)I. The space WJ Is the

space of functions f having J derivatives with Djf In L..

Dowever, in soms discussions, for clarity we resort to the more cumbersome

SoMaion of 1.121 -1. ae. representing mnom In L 2-Lm ae.)
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12 A fundamental estimation problem

We begin by considering the general transport equation (based on mess

balance laws) given by

aut + CL Vu) UC') ( f(x,u) 0< x < 1,
Tt a x ax_

t > 0.

Here the term involving V represents a general "directed movement" mechanism

such as convection in tissue transport models or attractive/chemotactic

phenomena in population dispersal models. We shall assume that in general

this "velocity" V is spatially varying, i.e., V - V(x). The first term on

the right in equation (1) is a result of the usual Pick's first law of

diffusion and we shall assume for our presentation that the coefficient of

diffusion. is constant. The last term in (1) represents general sink/source

mechanisms (death/birth, reaction, etc.) that might be present. Of course,

u represents the concentreion (in tissue transport) or population density

(in species dispersal) that is of primary interest.

We assume that along with (1) certain initial conditicns u(O,x) = *(x)

and Dirichlet boundary conditions u(t,O) = g0 (t), u(t,1) a gM(t)

are given (or perhaps must be estimated--both situations arise in the situations

discassed below). Using a standard transformation of variables

(u a u-(l-x)g 0 -xg I ), one can transform the resulting Initial-Soundary Value

Probles (Z3VP) for (1) into an IBVP with homogeneous boundary conditions.

We asme that this has been done and furthermore we make the assumption

tbrughout that f Is linear in u. (This linearity assumption is not at all

essential for the methods discussed below to be valid, but it greatly imlifies

our ptesemtation-for a discussion of estimation results concerning problems

with ether ga noulintities in f, No (51, [8).)

: " - J, .. . . . .- I I L ... I-: .. ... .. II
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After a change of variables in (1) and some elementary manipulations

one obtains the transformed version of the 1BVP that will be central to our

presentation (we drop the - on the transformed variable u):

au _ 2u au2= q1 - + q2 (x)N-x + q3 Cx)u + g(t,x), 0 < x < 1,

(2) u(t,O) = u(t,l) = 0, t > 0,

u(O,x) = 'Vx), 0 < x < 1.

Given observations of a general biological process that can be represented

by equation (2), our task is to use observations of u to determine the

positive constant q, and the bounded functions q2 and q3 " More precisely,

we have observations {Yi(X)10 I x < 1) at times ti > 0, i - 1, ... , m,

and a given set Q a R x L.(0,1) x L (O,1) of admissible parameters

(ql q2,q3)' over which we wish to minimize the fit-to-data criterion function

(3) J(q) = I 1 u(tix) -= ,x) - ) J lidx
i=l f

where u(tipx) - u(tix;q) represents the solution of (2) corresponding

to q = (qlpq 2 ,q3 ).

In many practical situations, one has discrete data yiJ for u at points

(ti, xj) and in applying our methods one might instead of (3) employ the
j!

alternate criterion function

(4) J(q) = I JutixJ) YIj"
i,j

Indeed we did this in both the specific applications discussed below. (One

could, of course, use (3) with discrete data Yij by first constructing-say

K * _
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by interpolation--an observed "data function" yi(x) from the discrete

observations Yijj) The convergence theory for use of our methods with

criteria of the form J is somewhat more delicate, requiring one to establish

a pointwise in x--as opposed to L2-convergence of approximating solutions.

We therefore shall restrict our discussions of the theoretical aspects of

our method to the "continuous data" experimental situation which results in

a problem of minimizing (3) over Q subject to (2).

The ideas behind our methods are most succintly discussed in the context

of an abstract form of (2), which we formulate in the next section.

§3 An abstract estimation problem

We first rewrite (2) as an initial value problem in the state space

Z - L2(0. 1). Letting z(t) - u(t,.) and G(t) - g(t,.) denote time varying

functions with values in Z, we can formally write (2) as the system

(5) i(t) - A(q)z(t) + G(t) t > 0,

z(O) - T

vbere th, operator A(q) is defined on Dom(A(q))=H2 n HI by A(q)=qlD 2 +q 2 D +q3 *

(Here and below the operator D is differentiation, i.e. D -. ) The equation
ax

under consideration can thus be viewed as an ordinary differential equation

in the state space Z. The analogue to the usual (in thd case A is a matrixI At
operator) solution operator e is in this case the solution senigroup (a

one parameter family of operators on Z) associated with (5) which we shall

denote by S(t) (or S(t;q) if we wish to emphasize the dependence on q). Thus

solutions to (5) with G 0 are given by z(t) - S(t)z(0) - S(t)? and a

corresponding "variation-of-constants" formula can be used to define solutions

of (5) n the case that G is nontrivial. We summarise results for (5) in the

________________________________________
-~*' -- _ _ _ _

SJ
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following 1lea (for arguments see Appendix 1 and for detailed discussions

on semigroups and abstract differential equations see (1], (15]).

1
Lema 3.1. Suppose q21E W.,q3E L,. Then the operator A(q) in (5) satisfies

the dissipative inequality <A(q)z,z> < w<z,z> where w E 12Dq1 +Iq3 ..

Furthermore A generates a C0-seigroup (S(t) I satisfying IIS(t) Ii < *t

and (mild) solutions to (5) are given (for G integrable) by

(6) z(t;q) = S(t;q)Y + J S(t-a;qG(a)d.

In view of the system reformulation Just presented, we recast our

basic parameter estimation problem as one of minimizing over Q the functions.

m 2(7) J(q) - 2 Ict ;q)-y-l

Jul 2

where yt is the observation function at time t, as introduced in discussing

(3) above and z(ti;q) is defined by (6).

This problem clearly consists of minimizing a functional defined via a

state equation in the infinite dimensional space Z a L2 (O, 1). Any type of

computational procedure must be founded on some type of approximation to the

equation (6). We turn next to one class of approximation schemes which have

proved both theoretically and computationally sound.

... . _ II II I _ -- I I
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34 Approximations of the estimation problem

We approximate the estimation problem involving (6), (7) by a sequence

of problems defined on subspaces Z N , N - 1, 2, ... , of Z. Numerous possi-

bilities abound, but the schemes we discuss here have proved most useful in

not only the biological applications presented below, but also in a number

of other areas as indicated in the introduction. The subspaces Z we choose

are those generated by cubic spline elements. Full details on similar

problems are given in (5] but for the convenience of readers and the sake

N N Nof completeness, we briefly summarize the fundamentals. Let B0 , B1, ... , B N

denote the cubic B-spline elements (piecewise cubic C 2(0,1) functions

corresponding to the partition AN = {x i, xj = j/N, j = 0,1,...,N,

of [0, 1] --see [16, p. 208-209]) modified to satisfy the boundary conditions

N N N N N N
B (0) - B (1) = 0. Define Z - span (B0, B1 ,... BN}. In the usual notation,

ZN = S3  = (A E S3 (AN) *(O) = )(() = 01 where S3 (AN) - E c 2 (0,1)10

is a cubic polynomial on each interval [xi, Xi+l]I. Explicit formulae for

basis elements for S 3(A N ) can be given ([16, p. 89], [3]) and these can be

used to give analytical expressions for the modified basis elements BN (e.g.,

see (5, p. 10], [3, p. 12]).

N NGiven the subspaces Z , we let P denote the orthogonal projection of Z
onto Z ; that is, for any z E 7.PTz is that unique element in defined by the

relationships <PN z-z,BN> = 0, j = 0,1,...,N. Define approximates AN to A by

A N(q) = P NA(q)P N; these are bounded operators in Z. Let {S N(t)} be the

semigroup generated by AN, i.e. S N(t;q) = exp{A N(q)t} -- in this case, this

N
exponential definition has its usual power series definition since A is

bounded.

We use these constructs to approximate (6) by
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(8) zN (t;q) sN (t;q)PNf + J sN(t-a;q)pNG(a)da,

or, equivalently, we approximate (5) by

N(t) =AN(q) zN(t) + pNG(t)
(9) zN(0) A N .

The associated fit-to-data criterion is then taken as

N m zNt2
(10) JN (q) = i zN(t;q) - yiJ 2

i=1 12

and the sequence of approximating parameter estimation problems can be simply

stated: Minimize JN(q) over Q subject to (8) or (9). Before discussing

convergence properties of solutions to these problems, we explain how one can

easily implement these approximate estimation problems. We summarize the

more complete discussions given in [5, p. 10-11; p. 22-24].

We first note that any ZN(t) E ZN(and, in particular, any solution of

N N wN (q)N foaprritlt8) or (9)) can be written as z (t) = Iw(t;q)B, for appropriately
N J .0 j

chosen real coefficients wj(t;q). it is also easily seen that (9) is

equivalent to the Galerkin system of equations
NN N N

<z N(t),BN> = <A(q)z N(t),BN> + <G(t),BN>

(0),B.> a c',B.,j = 0,1,...,N.

N NN
If we substitute Z w i  into (11), then we obtain the mattiX system

1

'I i_ _ii____ _____ ____ ____



91
NN(t) (it) + (G(t))

(12) QN(O) RN()

where QN K are (N + 1) K (N + 1) matrices with elements

QN = <BN ON>

(13) J N>
Y. = <BN,A(q)Bi>,

and RN , wN are N + 1 vectors given by

RNQP)i =<Ye>

(14) RN N N
W ,co~wN X N

w = cQ1(WoWl,...,wN).

Thus, to solve the approximate estimation problems, one deals with

vector system of ordinary differential equations. More precisely, for a

given index N of approximation, one minimizes (10) iteratively. using (12)

A N
to compute w (t;q) (and hence z (t;q)) for each value of q in the

iterative procedure. The matrices Q are seven-banded and symmetric in this

case while the KN are seven-banded, in general unsymmetric, and involve the

unknown parameters ql, q2 , q3  The iterative procedure we have used with great

success when minimizing (10) is the Levenberg-arquardt. algorithm (a

modified Gauss-Newton type routine) as packaged in the rMUL routine ZXSSQ.

Either an IML package (DGOKR) employing Gear's variable order, variable

step method for stiff systems or an IMSL package (DVK) for a variable order,

variable step Runge-Kutta, was used to solve (12) at each step n the

Levenberg-Marquardt. (An implementation of the Cholesky algorithm Is used

to solve equations of the form Q Nx - y for x.)

-I -- - - - - - - - -
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Le l -N -N-N.N
Let qlq 2,q3  denote a solution to the problem of

minimizing (10) for a given fixed N (assuming for the present that such

solutions exist). Our goal., of course, is to obtain a sequence of

estimates (either q or some subsequence) that converges as N P- to an

estimate I that will be a solution of the minimization problem involving

(7) (or equivalently 3)). We shall establish such a convergence result

through a series of results below. We first argue that z N(t;q N) * z(t;q*)

when qN is any sequence converging to q* in an appropriate manner. We then,

under reasonable compactness hypotheses on Q, the set of admissible

-N -Nparameters, argue that some subsequence of {q I (where q is a solution

thof the N approximate estimation problem) converges in this manner to a

limit parameter j in Q that is a desired optimal estimate for the original

problem for (7). We begin this program with the following fundamental

convergence statement.

N N N N1
Theorem 4.1. Suppose qN. (q, , q , q ) is any sequence in Q n([,b]xWxL,),

N NO < a < b < -, satisfying Iq~I,lDq~j,,Iq 1. are bounded with ql
NI 21*.l' *q

qi-* q in L2, i = 2,3. Furthermore, assume q2,q3 , ,. Then

IzN(t;qN) - z(t;q*) 2 + 0 as N.-, where zNz are given by (8) and (6) resp.

A convenient tool to be used in establishing this theorem is a version

of the Trotter-Kato approximation theorem from linear semlgroup theory. We

state and use here a simple version (see [5]; in particular take vN - I and

j in Prop. 2.1 of that reference). For other versions see [15], [8],

[5] and the references given there.

Theorem 4.2. LetjWbe a Hilbert space and suppose TN(t), T(t) are CO-seni-

groups on Ngenerated by linear operatorsi, Orespectively. If U

(stability) there exist constants N and B independent of N such that

I S



119(t) fl e', (i) (consistency) there exist a subset 9of K

dense in %with 9 c Dom(*) and (A 0 -- ')9 dense in Wrfor some A)0 > 0

and for z E 9wehave 0j~j~~ as N. ,

then

j 9N(t)z-T(t)zj - 0 as N .'. for all z E

and the convergence is uniform in t on compact subsets of (0, -s).

We begin the proof of Theorem 4.1 by supposing th~at'f{N is given

as stated In that Theorem and then choosina s- ANq~d6 q) in Theorem 4.2.

Here, of course A , A are as defined in section 3 and above; we thus know

thatge andq( generate semigroups TN(t) = St ;q N and T(t) - S(t;qi*)

respectively. We first use Theorem 4.2 to establish th~at .SN(t;qN)z - Stft;q )z

for each z 6 Z.

To verify the stability condition (i) of Theorem 4.2, we observe that,

since Iq2- qj are bounded, one has in view of Ifta 3.1,

<AN(q N)z,z> = <P NA(q N)P Nz,z> = <A(q N) Pz,P a'

< w(q) < A, Pz> < (qN) <z,z>

Z. .8Z>z
f or 0 appropriately chosen, independent of N. It thus follows from standard

arguments (e.g. see the discussions in [15, p. 16-2:4) that an exponential

bound as In Mi holds.

Next we turn to condition (11) and observing that *(q )is the

infinitesiml generator of a C0-semigroup, we note that. S! Dom(A2 (q*))

is dense in Z (see [1SpJ) Clearly .9 CDom(A(q*)). and

*for A 0 > o(q ),we have that the resolvent operator R. (A(q*)) - [A o-A(q*)J
0 2

exists. For f Dom(A(q*)) we find RX (A(q*))Ip I Do.(A (q')) a-9 Thus

*for any ji C bom(A(q*)) the equation [X o-A(q*)]# a'* is solvable for

f £ (just take * R~ ) Hence (I o-A(q))g t2 Dom(A(q*)) so that
- 0
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(Ao-A(q*)).9 is dense in Z. To satisfy (ii) it remains to demonstrate

that AN(qN)z -,,A(q*)z for z in the set -9 Just defined. We state

this As a lemma and defer detailed arguments to Appendix 2.

Leoma 4. 1. For z C 9 Dom(A 2(q*)), we have

IN(N -q *) 0 as N .-

Having'verified the hypotheses of the Trotter-Kato theorem in the case

of interest to us here, we thus have S N(t;q N)z -* S(t;q*)z for z 6 Z,

uniformly in t on compact intervals and this holds for any sequenceI

q N -* q* satisfying the hypotheses of Theorem 4.1.

To complete the proof of Theorem 4.1, we use (6) and (8) to write

(again 1.1 denotes 112

Iz~.qN -~~* 1 . 1 NT-I I + JI rt Ot-yPNGa - S(t-a)G(a)]da I

where S N(t) - SN(t;q N).' S(t) a S(t;q'). Thus we have

,zNt~q) -~t~*)I JPTV + ftSNtO)[p%(O) - Gajd

+ i I[SN~t~o) -S(t-)]Gc,) da
p_,l+ Met ft PNG(o)-G(o) Idv

+ fJi[SN(t v)*S(t )]G(v) da.

Each of these terms .0 as N. from the convergence properties of

pNand SN (t) already established plus the dominated convergence theorem.

This completes the arg~uent3 establishing Theorem 4.1.
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We turn finally to explain how the convergence results of Theorem 4.1

can be used to obtain desired results for our parameter estimation problems.

We first place restrictions on the admissible parameter set Q. Let

0 < a b < f, let B2 be a bounded subset of W1 (i.e. there exists K

such that e B2 implies 1q2 1 K and Dq21. < K) and B3 be a

bounded subset of L . We assume

1l 2 2EH(a) Qc (q=(ql,q 2,q3) E R x W; x W 2.ac<ql<b, q 2 B2 ,q 3  B3),

H(b) Q is compact in the R x L2 x L2 topology.

Consider now the functional 3N defined in (10) where zN(t;q)
N (t;q)N is defined via (12),(13),(14). Noting that K =

i I ij

<DN 2N qDB. B. N> depends continuously on q in the RI  L2 x
Si, I j +q2 D  -1 x x

topology, one sees that it is not difficult to argue that q . z N(t;q), and

hence q.+ JN(q), are continuous in the same sense. Thus from the compact-

ness assumption (b) on Q we see there exists ; E Q that is a solution to

the problem of minimizing jN over Q, N - 1,2,....

The sequence {}) thus obtained is in the compact set Q and hence we

can extract a subsequence {q } converging to some limit parameter q in Q.

We claim that j is a solution to the problem of minimizing (7) subject to

(6). To see this, we first observe that by definition

(IS) J Nk(qNk ) < A(q) for all q C Q.

2 -N ,k(t i -"k

Since q2,q3 ' W2, we have bymheorem 4.1 that z ; ) * z(ti;;) as

FN .. Furthermore, that same theorem with qN _ q for all N yields

SzNk(ti;q) , Z(ti;q) for any q f Q. Recalling (10) and taking the limits in

the inequality (1S), we obtain J(q) <_ J(q) for any q E Q; i.e., q is a

t :;A
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minimizer for J. We sumarize our findings in a formal statement.

Theorem 4.3. Assume that Q satisfies the hypotheses H(a),K(b). Then

solutions q to the problem of minimizing JN exist and there exists a
N 1

subsequence {q } converging in the R x L2 x L2 topology to a solution

q of the problem of minimizing J given in (7).

We conclude this section' with several remarks on the above discussions.

First note that we only obtain (theoretically) convergence of some subsequence

of the approximate estimates. In actual practice we almost always have found

-N
that the sequence {q ) itself converges. One can prove that this stronger

statement is true in the case that the original estimation problem (for (7))

has a unique solution - a situation unhappily rarely encountered with real

data and a sophisticated model involving a partial differential equation.

The theory developed above extends easily to the case where one wishes

to also estimate the boundary conditions (e.g., the brain transport example

below) and/or initial conditions (e.g., the insect dispersal example below).

For ease in exposition we have not treated these cases directly in our theory

sketched here; the theoretical ideas ar. the same in these cases (albeit $
the technical arguments are slightly more involved) as the interested reader

can ascertain by consulting [S],[8].

Finally, as with most "theorems" in applied mathematics, the conclusion

of Theorm 4.3 is valid in many situations where the smoothness hypotheses

(e.g., H(a)) of the theorm are not satisfied. We have numerous computational

examples on which the methods perform well (i.e., converge) even though the

coefficimts are not smooth. Indeed, in the insect dispersal example below,

we have q2 i W, so strictly speaking, Theorem 4.3 is not applicable. But
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as we shall see, the estimation schemes perform admirably. In this par-

ticular instance, one can, at the expense of a great increase in technical

tedium, modify the arguments in this paper to actually establish convergence.

However, in a number of other areas of applications, we have used our methods

successfully even when we cannot establish convergence theorems for the

particular class of equations under investigation.

i IM
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W5. Applications to biological systems: brain transport and insect dispersal

Oroblems

In this section we apply the spline techniques to questions of biological

interest. In particular, by using these techniques in conjunction with experi-

mental data we identify convection and diffusion terms for a brain transport

system and for a population of dispersing insects. Proceeding heuristically,

we examine the identified parameters in order to gain insight about underlying

biological mechanisms or to suggest further experimentation.

A. Testing the methods with "known" numerical data

Before applying our methods to real experimental systems, we tested their

performance against "data" generated by a known diffusion and convection

equation. Our intent was to investigate practical issues such as amount of

data required, accuracy of method and computational hazards. In these tests

we also considered a similar (in spirit) approximation method, which uses

modal (eignfunction) basis elements (see [2]). This allowed us to compare

two algorithms that share a common purpose, but that my differ in their

effectiveness. Since detailed discussions of our findings can be found in

[20], we sumoarize those results only briefly below.

We consider the example

ut = qIuxx + q2ux t > O, 0 x 1

(16)
u(t,O) W co

u(Ox) - Cx)

where #(x) - -2x2 + x + 1. We ran tests on this example with either

au
Dirichlet (ut,]) - 0) or Neumann (T-(t,l) - 0) boundary conditions at

the right boundary x - 1.

'Vca" for our tests were generated in the following manner:

i i i- . i a II II
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Fixed values for q 1  q2 and c0  were chosen (e.g. q .3, q 2 1.75,

c - 1.0) and an infinite series technique (independent of any of the methods

being tested) was used to generate numerical solution values u(ti,x) at

points Cttoxj) t - 1. 2,. 1. j - 1, 2, .. ,J in (0,-) x O)'

Either these values alone or in some cases these values with noise added

(via a packaged random noise generator) were used as data yij in the criterion

function 3 of (4) and its associated approximation with u replaced by uN.

In general, the spline based techniques discussed in this paper proved

superior to the modal techniques. For problems with homogeneous Dirichlet

boundary condition at x - 1, we first assumed that c is known and attempted
03

to estimate q, and q2 in (16), given varying amounts of data. For I - 1,

AJ - 3 (me time observation with three spatial points) the spline method

-8produced correct converged estimates (for example, at N - 8, estimates q-

.3001 and qo - 1.7486 and residual sun of squares (RSS) 8(q8) a .69 z 10 - 9

q2
were obtained) while the modal techniques failed to produce a numerically

convergence sequence of estimates. For I - 2 or 3 and J - 3 (two or three

time observations, each involving three spatial points) both methods yield

converged values; however, in these cases the spline based method appears

to be more accurate (smaller US) and more efficient (couputationally).

furthermore, the addition of an extra time observation (I - 3 vs. I - 2) did

not Improve the fit of the model. We then investigated the ffects of increas-

In the number J of spatial points in the data sets. A general finding ms

that there emisted a minula number of spatial points necessary for the metbods

to yield good parameter estimates (J - 3 sufficed for the spline schm while

J - 4 was required for the modal method). Beyond this minimal number, extra

, spatial observation points did not necessarily increase the efficiency of

I1 - 'r S Il
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the methods. This means that for a given experimental system and its

associated model, it may be possible to identify the number of data

points required for accurate parameter identification. When the process

of gathering data is expensive or time consuming, we therefore suggest that

our parameter identification methods may provide guidance in deciding

upon the number of time periods or spatial points that need to be sampled.

Finally, we turned to the full problem of estimating all three

parameters (qi" q', e) in (16). Our findings were quite similar to those

just summarized. For the spline based scheme, one time observation with

three spatial points (I - 1, J - 3) were sufficient data to produce conver-

gence to correct parameter values. Whereas taking an extra time observation

(I - 2) does not generally produce better estimates using the spline method,

in some cases it does if one is using the modal technique.

We also examined the performance of the spline scheme with Neuman

boundary conditions and equation (16). Again, the method performed well

in estimating all three parameters ql, q2 , co, given data sets corresponding

to I = 1, J - 3. Slightly better parameter estimates were obtained with

I - 2 as opposed to I - 1, no matter the value of J (J - 3, 4, 5, 6). For

fixed I - 1 or 2, estimates based on 3 or 4 spatial points were as good as

those obtained from 5 or 6 spatial points.

In summary, the tests of the cubic spline scheme we carried out on the

model (16) persuade us that the method proposed can be usd with a good deal

of numerical confidence with regard to fitting data to models of the form (2).

.-;.t :; -,'-. ,--,-"- y :.-. ,,-------- - .-- '--- ' - ........ - - -. . ..- -
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B. Understanding brain fluid transport

A primary question concerning transport mechanism in brain tissue

is whether diffusion alone or diffusion and convection are responsible for

transport in gray and white matter ([12 1 171118]). Mathematically, we can

view this as a question of determining the magnitude and thus contribution 4
of V (convection) and D (passive diffusion) in the equation

2au au aU
T+ V-u D-

where u represents the concentration of a substance being transported in

the brain. To investigate this problem we have used our spline techniques

with experimental data kindly provided by lyner, Rosenberg and associates

([171118]). The data consist of laboratory measurements of u values at

various locations in the tissue at a fixed time. These measurements were

obtained from experiments (described in [17][18]) using adult cats.

Artificial cerebrospinal fluid containing labeled sucrose was perfused Into

each cat's lateral ventricle. At the end of the perfusion period, the

animals were sacrificed and their brains were rapidly removed and frozen.

Samples of gray and white matter along a direction perpendicular to the

ventricular surface (which will be the x-axis in our model) were removed,

serially sectioned and analyzed. From measurements of radioactivity, the

averae concentration of sucrose in each slice was determined, yielding data

which corresponds to observation at a fixed time t i (ti- 1, 2,or 4 hrs. for

the cat experiments). Prom this data {A(txj)}i for the concentration

u, the transport of sucrose in gray matter can be compared with that in

white matter.

To aamlyse these data we used the cubic spline procedures to estimte

peramters representing diffusion (q, in (16) convection (q2 ) and the
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concentration (c ) at the boundary x - 0. In Table 1 we have extracted

typical results of these analyses from a more detailed report by Sives and

Sato (20]. To interpret these results we have examined the predicted

concentrations as though they were obtained from a least-squares regression

approach and then analyzed the data with F-statistics (see [22]). Of

course our model is not a simple curvilinear regression equation since it

is a dynamic model, but the parameters were estimated using a least-squares

minimization routine. This approach then focuses on: the total variation

in data (total sums of squares or TSSQ), the variation explained by the

model (explained sums of squares or ESSQ), and the sum of squares error

between the model's prediction and the data (the residuals or unexplained

variation, denoted RSS). This application of ?-statistics is not strictly

appropriate because we do not know anything about the distribution of

residual errors; nonetheless, it provides a quantitative measure of the

performance of different parameter estimates and is couched in terms that

facilitate comparisons between models (e.g., explained and unexplained

variation). The degrees of freedom were selected in the following manner

(following the conventions and notation set out in (22]): explained df =

the number of parameters estimated by our spline technique (analogous to

the number of terms used in polynomial regressions), total df - number of

data points, and unexplained df u (total df) - (explained df).

From Table 1 two conclusions are striking:

1) both models (diffusion alone, or diffusion plus convection) explain an

enormous portion of the variation In the data (a mininum of 971 ),
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2) the differences between the success of the two models are negligible

(at most, improving the % of explained variation from 97% to 99%).

In Table 1 and in all of the analyses performed by Sives and Sato [201,

the "diffusion plus convection" model always explained more of the variation

than did the "diffusion alone" model. The addition of a convection term

often resulted in dramatic reductions in unexplained variation (or residual

error); for example, in Table 1 we see that for data set 7, inclusion of

convection reduced the RSS from 22.7 to 7.8. However, because both models

were consistently so successful, it is difficult to establish that one is

significantly better than the other. When we calculated F statistics for

the improvement of explained variation by moving from the 2-parameter

diffusion-alone model to the 3-parameter diffusion-and-convection model,

our F statistics never attained the p < .05 level, and were at the p < .1

level in only one instance.

Clearly, the cubic spline methods yield parameter estimates that perform

exceedingly well in describing the data. This reinforces our faith in the

methods. Unfortunately, we are not able to answer the initial question

about the relative importance of convection in brain transport. The

consistently better (albeit only slightly) performance of diffusion plus

convection models temptingly hints at the role of convection. Our inability

to resolve the issue of convection cannot be blamed on the parameter

identification methods. Instead, we argue from Table 1 and similar analyses

that it is apparent that data must be obtained for more than one time

point after perfusion. When only one concentration profile is available,

there is too much freedom for juggling combinations of D and c or of D,

V and c0 such that the data are "fit." Our analyses point out that the

experiments need to be modified in order to assess the importance of

. '....
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convection. The addition of another time period is feasible by changing

the label during the course of the experiment (Kyner and Rosenberg, pers.

comm.). Indeed, as we shall see in the following section, data taken at

two time periods allow us to identify the importance of "convection" terms

in models for populations of dispersing insects.

C. Modeling insect movement in cultivated gardens

Since Skellam's [21] pioneering work in 1951, diffusion models have

been used to model animal dispersal. Unfortunately, most of this modeling

has proceeded independently of data ([13], [14]). In fact, some researchers

have suggested that the paradigm of diffusive flux is inappropriate for

animal movement and have advised instead a purely descriptive regression

approach to quantifying dispersal ([24], [25]). One of the problems with

previous diffusion models is that only the simplest process, that is pure

passive diffusion, lends itself to tests with experimental data (see [14]).

Recently one of the authors exhaustively applied passive diffusion models

to the movement of two common flea beetles, Phyllotreta cruciferae and

Phyllotreta striolata [11]. Although the models provided a good description

of beetle movement in some cases, several experimental results clearly did

not conform to simple passive diffusion (see [11]). We subsequently applied

spline parameter identification methods to these beetle data with a model

extended to include a spatially-varying convection term.

Using mark-recapture experiments, beetle movement was studied in

experimental linear arrays. These arrays were 1 m x 80 m cultivated strips

in the middle of dense goldenrod stands, each array containing patches of

one of the beetles favored foodplants, collards. Since the goldenrod

field surrounding each array contained no foodplants for the beetles,
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the beetles tended to move only in one dimension -- up and down the

linear arrays along the 80 m axis. Details about the marking and

recapture procedure and experimental design are described in [11).

The important point is that marked flea beetles were recaptured anywhere

from 1 hour to 3 days after their release in the experimental arrays;

these recapture distributions represent the data that we seek to

describe with a diffusion-convection model. The model we examined is

2i

(17) lu - (V(x)u) + D 2u  u>
(17)at ax - x2--- -

with u(O,x) (which represents the initial distribution of marked beetles) known

and u(t,O) - u(t,l) - 0. Here the linear arrays have been rescaled to

fit In the (0,1-) interval. On this rescaled interval the cultivated strips

extended between .1 and .9 and the actual sampling points (recapture stations)

are evenly spaced between approximately .20 and .80. The center of each

experimental array thus corresponds to x - .5. The negative iu term in

(17) represents beetles that disappear from the system either because they

die or engage in long distance migration (both processes are negligible

over the short time scale of our experiments but would become important

over longer-running time periods). We have considered several different

V(x) functions and combinations of V(x) with spatially varying u(x) terms.

In a separate report we will synthesize these analyses to dissect differences

between beetle species and to quantify the influence of crop spacing on

the movement process (Kareiva and Banks, in prep.). Our ultimate goal

is to describe the changes in density (u) of beetles through time and

-. . .. . . ... . . . . . . . . . . .. . .. . . . . .
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space. In this paper, our more limited goal is to demonstrate the

application of the spline techniques to insect dispersal data, and to

point out some of the problems of such analyses. To do this we have

selected a small subset of our analyses for illustrative purposes.

Technically the spline approximation scheme was successful in two

ways:

1) it often identified combinations of V(x) and D in equation (17)

that predicted beetle distributions in close accordance to

observed distributions (see Table 2, example 5.2)

2) it identified convection terms that significantly reduced RSS

relative to diffusion-alone models (again see Table 2,

example 5.3).

It is important to note that the addition of convection significantly

reduced RSS while using only the initial data and one time period after

that initial data. This is in marked contrast to the case involving

brain transport, where the performance of diffusion-alone versus

diffusion-and-convection models could not be distinguished. We were able

to use results of the beetle dispersal experiments to examine the differences

between transport processes with and without convection because the initial

date in these experiments was known and fixed. Consequently, the only un-

identified parameters influencing the fit of the model to data are diffusion

and convection parameters, These positive statements are balanced below

by some cautionary tales concerning the problems we had analyzing insect

dispersal data.

One of the difficulties uncovered by our analysis was that a wide

variety of different convection functions yielded low RSS's. Moreover,

the convection functions that worked best represent functions that

Ub
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contradicted our initial biological hypotheses. In particular, V(x)

functions corresponding to no convection near x - .5 and biased motion

out the ends of arrays (away from the center of the gardens) yielded

the lowest RSS values. This contradicts our initial hypothesis that

there should be convection near the ends of each array back towards

the central position (toward x - .5). At this stage, however, because

there are so many reasonable possibilities for V(x) that we have not

examined, we are reluctant to draw any firm conclusions about the shape

of V(x) for these beetle experiments. Note that the spline methods as we

have used them here do not magically reveal the shape of functions such as

V(x) -- they only estimate the constant parameters in an assumed functional

form. We are also cautious because we feel,in retrospect,that the beetle mark-

recapture experiments are not well suited for identifying convection functions.

This unsuitability results from the release of all beetles in one position,

and the fact that subsequent recaptures tended to overrepresent the

middle regions of arrays and underrepresent the peripheral reaches of

each array. Note that the shortage of recaptures near the periphery

could be explained by either of two opposite convection processes:

i) only a few beetles are caught away from the center because convection

towards the center prevents their outward spread, or (ii) only a few

beetles are caught away from the center because whenever they enter that

region, they are rapidly transported out of the arrays due to an outward

convection. To best identify convection processes, mark-recapture

experiments should begin with a uniform distribution of marked individuals.

Changes in that uniform distribution could then be used to distinguish

among different models. The flea beetle experiments suffer because too

!U

t 1*
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few individuals were observed in regions that we speculated would be

characterized by high convection,

A second major limitation of our analysis concerns its assumption of

constant parameters through time in spite of the biological inevitability of

temporal variation in insect movement behavior. Indeed, Table 3 includes

examples of what appear to be temporally varying parameters, that is

parameter estimates which vary widely using recapture data from different

days, but identical experiments and beetle species. Only rarely were we

able to find one set of parameters that predicted several consecutive

recapture distributions. Because insects are ectotherms and are very

sensitive to weather, their moveet behavior will vary from day-to-day

as a consequence of variation in weather. We are in the process of

extending our analyses to Include temporal variation in D, V and v

in equation (17). This elaboration is necessary if we are to model

insect dispersal in extended field situations.

A final caution involves the potential for obtaining good matches

between model and data (i.e., low R.S's), yet biological nonsense.

Applications of these identification approaches should always entail

efforts to get independent estimates of parameters as much as possible.

Otherwise, what appears to be numerical success might correspond to

biological absurdity. For example, one of the sets of parameters

that we sought to identify was D and u in equation (17), holding V(x) 0.

Doing this we occasionally obtained low RSS's, even for nore than one

consecutive time period. But, the decay rates or U's that were thus

identified were impossibly high - they corresponded to decay rates

five times higher than anything ever observed for flea beetles in the

experimental arrays.

k •~~ ill - - - n RE
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6. Concludint remarks

The spline techniques we describe in this paper are very effective

at fitting particular transport equations to data. By itself, this

parameter identification approach cannot, however, lead to correct

choices about what type of transport equations are appropriate for

particular biological systems. Data must be collected and experiments

designed in special ways if one wants to use the parameter identification

approach to distinguish between different transport models. We

recommend experimenting with the spline methods before collecting

experimental data. In that way an experimental design might be tailored

so that it can extract the maximum information from epline identification

methods. Factors such as initial data, time schedule for collecting

data and the spatial sampling regime will all influence the performance

of spline methods. We have found, for example, that one of the worst

types of initial data is a point release of marked insects, and now we

plan to modify our mark-recapture experiments hereafter. Spline

identification methods will undoubtedly challenge biologists in their

interpretation of data. Most importantly they allow us to address

complex transport processes well beyond simple random diffusion and

conventional numerical mthods.

Mon

'-, , !
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TABLE 2

Applying the spline parameter identification approach to Phyllotreta striolata

dispersal in different experimental arrays. N w number of spline basis

elements; % expl. = % TSSQ explained by model, that is, it equals
TSSQ-RSS x 100; t = time period or periods at which data were collected. In

TSSQ

all cases the initial data are u(O,x) - 211.2 for x * .5 and 0.0 for x # 0.5.

The initial spline for t = 0 was fixed to be the same for all analyses below

- it was the spline that best approximated above initial data. Note that the

results of any given identification run may depend on initial guesses.

beample 5.1 Identify D, V, and P in

2au a a- + (V(x-.S)u) - u
ax

9m interpatch spacing

N - 32

t - I and 3 days

We soarched first for D, then D plus u, then D,u and V

D a 20.0 m2/day % expl. - 74.6%

S-1.9

V - +59.2 m/day F3,10 - 9.77

p < .OOS

... .- .. - - -. ....
III I i Ill I I I I i i
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Table 2 - continued

3m interpatch spacing

N = 32

t = 1 day only

D = 4.0 m2 /day % expl. = 99.9%

I = 1.35

V = -178.4 m/day F3, = 851.0

p < .001

Example 5.2 Identify D and V in

au Cl _ 2u 3

9m interpatch spacing

N = 22 % expl. = 21t

t = 2 hrs, 3 hrs. F2,11 - 1.45

D w 1600 m2/day p < .S

V - -2.4 m/day

Exa le 5.3

Contrast diffusion alone, to diffusion plus convection in

au D 3 2U a (V62(-55U
3x

7- - - - -.$-- . -;I-.- '
" _T :- ,. _- -- - ;-- ----....- ...
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Table 2 - continued

63 interpatch spacing

N = 22

t - 1 day

Diffusion alone Diffusion and convection

22
D a 2520 m/day D m 240 m2/day, V = -114 a/day

% expl. - 24% % expl. = 95.6%

F1,7 = 2.19, p < .25 F2.6 - 65.6, p < .001

Improvement in % expl. by adding convection

F = 98.4, p < .001

3m interpatch spacing

N a 22

t - 1 day

Diffusion alone Diffusion and convection

D n 2190 a2/day D a 320 a2/day, V a -43.7 a/day

% expl. - 31% % expl. - 97.3%

F1,7 . 3.12, p < .25 F2,6 72.O p < .001

I!Trovement in % exPl. by adding convection

F1 ,6 a 98.3, p < .001
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TABLE 3

Parameter identification using data from the same experiment and beetle species,

but different time period after release. As in Table 2, the initial spline

was fixed to provide the best fit to u(0,x) = 211.2 for x * 0.5 and 0.0

for x 0 0.5. All analyses below were run with the number of spline basis

elements equal to 22. The "s expl." below refers to the % of TSSQ explained

by diffusion model, that is, it equals TSSQ-RSS x 100.

TSSQ

Example 5.4 Identify D in

au zD a2u
at I

ax

I. Phyllotreta striolata in linear array with 3m interpatch spacing

(i) data from t = 1 day

estimated D - 2190 m 2/day i expl. - 31%

FI 7 = 3.12, p < .25

(ii) data from t = 3 days

estimated D U 8800 m 2/day

F1,7 = 3.63, p < .25 % expl. - 34%

11. Phyllotreta striolata in linear array with 6m interpatch spacing

(i) data from t = 1 day

estimated D = 2520 m2/day

F1,7 = 2.19, p < .2S % expl. - 24%

(ii) data from t - 3 days

estimated D - 8900 m2/day

F1 , 7 a 2.94, p < .25 % expl. - 30%

. .. II II I
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Table 3 -continued

Ill. Phyllotrta striolata in linear array with 9S interpatth spacing

(1) data from t -lIday

estimated D - 2330 am /day

F 1. .669 p < S5 expi. - 12%

(ii) data from t - 3 days

estimated D - 9600 m 2/day

P1, i' 2.74, p c -2S exjpl. -35%

Note that in none of the examples, does diffusion alone provide a statistically

significant description of recapture distribution. Nonetheless, the variation

* in D's as a function of time is striking.
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Appendix 1

For the arguments to establish Lemma 3.1, we assume the reader is

familiar with the theory of linear semigroups and dissipative operators on

a Hilbert space (see [1],[1S]). We first define A0 (q) = qlD 2 and

AI(q) - q2D + q3 so that A = A0 + A Here Doam (A0) - Doua(A) and Dom(A) 

H1. Next we observe that A0(q) is maximal dissipative in Z and is thus0•

the infinitesimal generator of a C0-semigroup of contractions [15, p.17,

Thu. 4.5bl. The dissipative estimate follows immediately:

<Ao(q)z,z> - <qD 2z,z> = -Iql[DzI1 < 0.

Indeed, A0 is self-adjoint with spectrum in (--,0] so R(A 0 -AI) = Z for

A > 0 (see [19,p.349]) and hence A0 is maximal dissipative.

We procede by considering A1 (q) and demonstrating that it is a relative-

ly bounded dissipative perturbation of A0 (q). First observe that for

* E H0 , an integration by parts yields

o(q 2 DO -f.0JD(q 2 0.) a 0 O[Dq 2 +q2 Df]

or

2J(qD*)* - _J~,22

r 1~ 2

and hence A1 q) -oil is dissipative where w is as defined in the statement

of L~ema 3.1.

Turning next to arguing relative boundedness, we suppose# 6 Dom(A) If 2 n f
0 0'

O - - --

_ ___ |



Then

(Al) JA1,12 = Iq2DOqsoj 2 < Dq2D1) 2 + Iqs 31112

1 2 2 1 :

while (again we integrate by parts)

1( I12 1 fl 2

jD = = -q l (D *)0

qlo-CAoO)O <_ A0 I.

If we consider this last term as ((cA 0 I)(1I.I) and use the fact that

ab < -(a 2+b 2), we thus obtain

2

2q, 01A012 --- 2.
2qla

Hence we have

IDJ 2 < - )A 0 J2 + ,02 .

Choosing et 1q we find

Iq 121
Jq2DJ 2 _ Jq2 ,JjD J2 < 1A, 2 + q 112

Combining this last estimate with (Al), we finally obtain

A10J2 < 21A 0 12  2 {3q2 )0

*so that

I) 1 IA0 12  2* CA1 (q)-wI)*l 2 £1Aj 2  +*{,I2.q + Iq3l.}lIi 2.-.1
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It follows that Al(q) wI is dissipative and relatively bounded with

respect to A and satisfies the hypothesis of [15,p.8
4 , Thm. 3.1]. Thus

0

A(q) - wI A 0 (q) + A 1(q) - I is the generator of a C0 -semigroup of con-

tractions and hence A(q) = (A0 (q) + A 1(q) - wI) + wI is the generator of

a C0 -semigroup {S(t)) satisfying IIS(t) I < ewt  (see [15, p.80, Thm.l.1).

This yields (see [15, p.16,17, Thm. 4.5(a)]) the first two claims of Lemma 3.1.

That mild solutions of (5) are given by (6) actually follows by definition

from the usual theory of linear semigroups and abstract evolution equations

(e.g., see [1],[15]).

7-
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Appendix 2

We establish the veracity of Lemma 4.1. First, simple arguments reveal

** 2 2 4 1
that whenever q 2,q3 E W

2 , we have 9 E Dom(A (q*)) C H n H1. For if
02 2 1 2

0 E Dom(A2(q*)), then A(q*) E Dom(A(q*)) = H2 n H that is, qlD  +

q2D + q5 = y is in H2 n H0. It follows immediately that

2 2 41
D20 = I/ql[y-q D-q ?] is in H or that E H (we have * E H0  since

Dom(A 2(q*)) c Dom(A(q*)) = H
2 A HI).

To complete the arguments for Lemma 4.1, we need some estimates on the
proectonopeatos N : N

projection operators P Z - Z as defined above. These estimates, which

are themselves derivable from well-known results from the theory of spline

approximations, are given in [5, Lemma 2.3] and are as follows:

4 1
There exist constants ci such that for z E H n HO,

ScN-4 ID4z,

ID(pNz-z)l 2 < cN 3 D4 z12

ID2(PNz'z)12 1 c2N-2ID4 z 2'

Finally, for z E C H4 A H0 we consider the estimates (to facilitate
0

notation we use Ii for 1"12 here)

A N(qN ) z-A(q*) zl - JpNA(qN)pNz -A(q*)zl

I IPN(A(qN)pN z-A(q*)z[ + I(P -.I)A(q*)z

<IA(q N)pI z-A(q*)zl + (p N_-I)A(q*)zl.

The second term in this last expression * 0 as N -, This follows since

* ,
• o.
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p N I on Z (the above estimate yields that PNz zZ for a dense set of

z in Z and the {P NI are uniformly bounded on Z).

Consider the first term:

fA(qN)pNz-A(q*)zl = I (qND +q2 D+q3 )P z -(qlD +q2 D+q3 )zl
N2 2 3.N

:S Iq ND (pNz-z) + Iql-ql)D 2*

"qND(pNz-z)+ + (q2-q 2)DzI

" qN(P Nz-z)l + I(q -q3 )zl

< Iqz IJD2CpNz-z)I 2 + ql-q l D2z1 2

IqNlljD(pNz-z) Iq 2-q2 2 IDz.

+e I q *I~~ IqN-q*Il~3JI 1-z2 + -3121 zl.

But every term in this last sum 4 0 as N due to the following facts:qN N N N *_ q qN *:

q 2L q3 are bounded, q q, q " - in L2 , i u 2,3, and

PNz,Dpz,Dp, converge to z, Dz, Dz, respectively.

141-
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